

Weekly Lecture Schedule – Microbiology (BIOL 2321)

Meeting Time: Tuesday & Thursday, 12:30–1:45 PM (Online – Blackboard)

Course Start: Tuesday, January 20, 2026

Spring Break: March 9–13

Week	Dates (Tue / Thu)	Lecture Topics (OpenStax)	Weekly Learning Objective
1	Jan 20 / Jan 22	Ch 1 – An Invisible World	Explain what microorganisms are and why they are central to health, ecosystems, and disease.
2	Jan 27 / Jan 29	Ch 3 – Cell Structure	Compare prokaryotic and eukaryotic cell structures and relate structure to function.
3	Feb 3 / Feb 5	Ch 4 – Prokaryotic Diversity	Classify major bacterial and archaeal groups based on structural and metabolic traits.
4	Feb 10 / Feb 12	Ch 5 – Eukaryotic Microbes	Distinguish fungi, protozoa, helminths, and algae and their roles in disease.
		Exam 1 – Thu, Feb 12	(Ch 1, 3, 4, 5)
5	Feb 17 / Feb 19	Ch 6 – Acellular Pathogens	Describe viral structure, replication cycles, and mechanisms of acellular infection.
6	Feb 24 / Feb 26	Ch 7 – Microbial Biochemistry	Explain how enzymes and macromolecules support microbial metabolism and survival.
7	Mar 3 / Mar 5	Ch 9 – Microbial Growth	Relate microbial growth requirements to laboratory cultivation and infection dynamics.
		Midterm Oral Exam opens Mar 5–6	(AI oral, group case study)
—	Mar 9–13	SPRING BREAK	—

Week	Dates (Tue / Thu)	Lecture Topics (OpenStax)	Weekly Learning Objective
8	Mar 17 / Mar 19	Ch 10 – Genome Structure	Describe microbial genomes and the molecular basis of heredity.
9	Mar 24 / Mar 26	Ch 11 – Gene Expression & Mutation	Explain replication, transcription, translation, and how mutations generate diversity.
10	Mar 31 / Apr 2	Ch 12 – Biotechnology Applications	Apply genetic engineering concepts to medicine and research.
11	Apr 7 / Apr 9	Ch 13 – Control of Microbial Growth	Evaluate physical and chemical methods used to control microorganisms.
		Exam 3 – Thu, Apr 9	(Ch 10–14)
12	Apr 14 / Apr 16	Ch 14 – Antimicrobials + Immunity Basics	Explain antimicrobial mechanisms and foundational immune defenses.
13	Apr 21 / Apr 23	Ch 15 – Microbial Pathogenicity	Analyze virulence factors and mechanisms of microbial disease.
14	Apr 28 (Tue)	Ch 21–26 – Infectious Diseases (Systems Overview)	Integrate infectious diseases across body systems using clinical reasoning.
Final	May 1–May 4	Final Oral Exam (AI)	Defend a systems-based infectious disease case using microbiological principles.