Sul Ross State University
Syllabus for Biochemistry I: CHEM 4301 (Spring 2018)
(Alpine and Midland)

Class: Biochemistry I
Room: WSB 321
Time: MWF 11:00-11:50am

Instructor: Dr. David Leaver
Office: WSB 318
Office Hours: M-R 2:00-5:00pm
Email: david.leaver@sulross.edu
Office Phone: (432) 837-8115

OBJECTIVES

Student Learning Objectives (SLO):

A student graduating with the chemistry major is expected to demonstrate that (s)he is able to do the following:

1. Organic Chemistry—Students will be able to draw organic molecular structures and explain organic reactions, stereochemistry, structural analysis and reactions in biological systems.

2. Inorganic Chemistry—The student will be able to demonstrate understanding of coordination chemistry, valence theory, elementary actions and advanced molecular theory.

3. Analytical Chemistry—The student will be able to demonstrate an understanding of theory of analytical chemistry and conduct analytical analysis, including data analysis and calibration, equilibrium chemistry, gravimetric analysis, titrimetric analysis, spectroscopic analysis, and electrochemical analysis.

4. Physical Chemistry—The student will be able to demonstrate an understanding of the application and theory of physical chemistry, including topics such as atomic structure, electrochemistry, surface chemistry, solid-state chemistry, and thermodynamics.

5. Research—The student will collect and analyze published chemical literature and undertake a chemistry research project.
Biochemistry I Learning Objectives:

At the end of this course, a student should have a good understanding of:

1. Chemistry and biological functions of water, amino acids, and proteins
2. Enzyme reactions, kinetics, and inhibition
3. The structure and biological function of carbohydrates and lipids
4. Biological membranes and cellular transport
5. Storage and transfer of biological information (DNA replication/transcription and RNA translation)
6. SciFinder (Chemical Database)

Calculator: A scientific calculator is required for this course.

Cell phones ARE NOT permitted for use in exams and should be turned off during class time.

REQUIRED TEXT:

The following chapters will be covered from “Lehninger Principles of Biochemistry” 6th Edition:

Chapter 1: The Foundations of Biochemistry
Chapter 2: Water
Chapter 3: Amino Acids, Peptides, and Proteins
Chapter 4: The Three-Dimensional Structure of Proteins
Chapter 5: Protein Function
Chapter 6: Enzymes
Chapter 7: Carbohydrates and Glycobiology
Chapter 10: Lipids
Chapter 11: Biological Membranes and Transport
Chapter 8: Nucleotides and Nucleic Acids
Chapter 24: Genes and Chromosomes
Chapter 25: DNA Metabolism
Chapter 26: RNA Metabolism (*If time permits*)

ATTENDANCE PRERESQUITE: BEING ABSENT FROM MORE THAN 9 LECTURES WILL RESULT IN FAILING THE COURSE.

HOMEWORK:
Thirteen (13) homework assignments will be assigned throughout the semester and will be equal weight per assignment. All of the combined homework assignments will contribute 20% of your final mark. Homework must be completed in PEN!

EXAMINATIONS:
There will *three in-course* examinations and *a final* examination. NO MAKE-UP EXAMS WILL BE GIVEN. The final is mandatory and will be comprehensive.

PERCENTAGE BREAKDOWN OF MARKS:
Homework: 20%
Research Essay: 15%
Each Midterm Exam (15%): 45%
Final Exam: 20%
Midterm Exam I: Wednesday, February 14th
Midterm Exam II: Wednesday, March 21st
Midterm Exam III: Wednesday, April 18th
Research Essay: Monday, April 30th (Due 5:00 pm)
Final Exam: Tuesday, May 8th 10:15am -12:15 pm

Course Calendar
Lecture 1 (January 17): Discussion on Syllabus, importance and historic background of Biochemistry, cellular foundations, overview of organelles, cells, and organisms
Lecture 2 (January 19): Chemical elements in biomolecules, major classes of biological macromolecules, chemical and physical foundations.
Lecture 3 (January 21): Preview of storage and transfer of biological information, genetic foundations + revision on chapter 1
Lecture 4 (January 24): Biological roles of water and cellular reactions of water (Homework 1 due)
Lecture 5 (January 26): Overview of pH and pK, buffer and titration curves, General structure of amino acids, properties of α-amino acids, classification of amino acids, reactivity and analysis of amino acids
Lecture 6 (January 29): Revision on Chapter 2 + peptide bonds in polypeptides and proteins. (Homework 2 due)
Lecture 7 (January 31): Preview of protein function and structural properties of proteins
Lecture 8 (February 2): Structural elements of proteins-primary, secondary, tertiary and quaternary structures, protein folding process
Lecture 9 (February 5): Revision on Chapter 3 General principles of protein design (Homework 3 due)
Lecture 10 (February 7): Elements of secondary structure and protein tertiary structure
Lecture 11 (February 9): Protein quaternary structure and more examples of protein structure and related biological function, revision on Chapter 4 (Homework 4 due)
Lecture 12 (February 12): Exam revision on Chapters 1-3
Lecture 13 (February 14): Exam I (Chapters 1-3, subject to change)
Lecture 14 (February 16): Understanding the relation between protein structure and biological function with few examples

Lecture 15 (February 19): More examples of protein function, revision on Chapter 5, roles and properties of enzymes

Lecture 16 (February 21): Fundamental principles of enzyme action and kinetic properties of enzymes

Lecture 17 (February 23): Substrate binding and enzyme action, enzyme inhibition, enzymatic reaction examples (Homework 5 due)

Lecture 18 (February 26): Role of coenzymes in the activity of enzymes, allosteric enzymes

Lecture 19 (February 28): Cellular regulation of enzymes, more enzyme reactions and practical uses of enzymes

Lecture 20 (March 2): Revision on Chapter 6 (Homework 6 due)

Lecture 21 (March 5): Introduction to carbohydrate chemistry, classification of carbohydrates, reactions of monosaccharides

Lecture 22 (March 7): Structures and functions of polysaccharides and glycoproteins

Lecture 23 (March 9): Revision on Chapter 7, Chemical structures, physical and chemical properties of fatty acids (Homework chapter 7 due)

March 12-16th is Spring Break (No classes)

Lecture 24 (March 19): Exam revision on Chapters 4-7

Lecture 25 (March 21): Exam II (Chapters 4-7, subject to change)

Lecture 26 (March 23): Polar and non-polar lipids, structural lipids in membranes, and importance of lipids

Lecture 27 (March 26): Working with lipids and revision on Chapter 10

Lecture 28 (March 28): Molecular composition, architecture, and biological functions of cell (Homework chapter 10 due)

March 30: Good Friday (No Class)

Lecture 29 (April 2): Membrane dynamics

Lecture 30 (April 4): Modes of action used by membrane transport proteins

Lecture 31 (April 6): Revision on Chapter 11 (Homework Chapter 11 due), chemical structures of DNA and RNA
Lecture 32 (April 9): Structural elements of DNA and RNA, functions of nucleotides,

Lecture 33 (April 11): Revision on Chapter 8; chromosomal elements, DNA supercoiling

Lecture 34 (April 13): Structure of chromosomes (Homework Chapter 8 due)

Lecture 35 (April 16): Exam revision on Chapters 8, 10, 11

Lecture 36 (April 18): Exam III; Chapters 8, 10, 11 (subject to change)

Lecture 37 (April 20): Revision on Chapter 24, (Homework Chapter 24 due)

Lecture 38 (April 23): DNA replications, DNA repair, DNA replication

Lecture 39 (April 25): Revision on Chapter 25, DNA-dependent synthesis of RNA (Homework Chapter 25 due)

Lecture 40 (April 27): RNA processing and RNA-dependent synthesis of RNA and DNA

Lecture 41 (April 30): Revision on Chapter 26, Final Exam Revision (Homework Chapter 26 due), Research Essay due 5:00 pm

Lecture 42 (May 2): Final Exam Revision

Final Exam (May 8): At 10:15 am-12:15 pm (Comprehensive)

Distance Education Statement: Students enrolled in distance education courses have equal access to the university’s academic support services, library resources, and instructional technology support. For more information about accessing these resources, visit the SRSU website. Students should submit online assignments through Blackboard or SRSU email, which require secure login information to verify students’ identities and to protect students’ information. The procedures for filing a student complaint are included in the student handbook. Students enrolled in distance education courses at Sul Ross are expected to adhere to all policies pertaining to academic honesty and appropriate student conduct, as described in the student handbook.
Students with Special Needs: Sul Ross State University is committed to equal access in compliance with the Americans With Disabilities Act of 1973. It is the student's responsibility to initiate a request for accessibility services. Students seeking accessibility services must contact Mary Schwartze, M. Ed., L.P.C., in Counseling and Accessibility Services, Ferguson Hall, Room 112. The mailing address is P.O. Box C-122, Sul Ross State University, Alpine, Texas 79832. Telephone: 432-837-8203. E-mail: mschwartz@sulross.edu.

Scholastic Dishonesty: Students who violate the University rules on scholastic dishonesty are subject to penalties, including the possibility of an F in the course and/or dismissal from the University. All assignments (including homework) need to be individually completed and not copied from another student’s work. Electronic submission of homework is accepted after hours (not recommended), but must be hand written and scanned (either with a scanner or a smart phone) and emailed to Dr. Leaver at: david.leaver@sulross.edu. [.pdf files are the recommended format for electronic submission of assignments]. Homework electronically completed in Microsoft Word or other similar programs will NOT be accepted.