Sul Ross State University
Syllabus for General Chemistry I: CHEM 1311:02 (Fall 2019)

Class: General Chemistry I
Room: WSB 301
Time: TR 11:00am -12:15pm

Instructor: Dr. David Leaver
Office: WSB 318
Office Hours: M-R 2:00-5:00pm
Email: david.leaver@sulross.edu
Office Phone: (432) 837-8115

OBJECTIVES

Student Learning Objectives (SLO):

A student graduating with the *chemistry major* is expected to demonstrate that (s)he is able to do the following:

1. Organic Chemistry—Students will be able to draw organic molecular structures and explain organic reactions, stereochemistry, structural analysis and reactions in biological systems.

2. Inorganic Chemistry—The student will be able to demonstrate understanding of coordination chemistry, valence theory, elementary actions and advanced molecular theory.

3. Analytical Chemistry—The student will be able to demonstrate an understanding of theory of analytical chemistry and conduct analytical analysis, including data analysis and calibration, equilibrium chemistry, gravimetric analysis, titrimetric analysis, spectroscopic analysis, and electrochemical analysis.

4. Physical Chemistry—The student will be able to demonstrate an understanding of the application and theory of physical chemistry, including topics such as atomic structure, electrochemistry, surface chemistry, solid-state chemistry, and thermodynamics.

5. Research—The student will collect and analyze published chemical literature and undertake a chemistry research project.
General Chemistry I Learning Objectives:

At the end of this course, a student should have a good understanding of:

1. The basic concepts and terms used in chemistry
2. The electronic structures of atoms and the periodic table
3. The basic concepts of chemical bonding
4. Chemical reactions in aqueous solutions
5. The ideal gas equation

Core Objectives (CO):

1. **Critical Thinking Skills** – Students will gain/improve their critical thinking ability by solving real life chemistry problems through inquiry, analysis, and evaluation of available information. Students will be tested on their critical thinking ability in exams and through lab experiments.

2. **Communication Skills** – Students will have the opportunity of improving communication skills through oral discussion and writing reports (i.e. observation, explanation, and conclusion, etc.) on the experiments done in the lab sessions.

3. **Empirical and Quantitative Skills** – Students will use the mathematical skills needed to manipulate and analyze numerical data obtained through experimentation in order to form conclusions.

4. **Teamwork** – Students will use team-spirit and consider different points of view to work effectively while conducting experiments as a team working toward a shared purpose or goal.

Text: “General Chemistry: The Essential Concepts 7th Edition” by Raymond Chang and Kenneth A. Goldsby, McGraw-Hill, New York, United States of America, 2014. (Older editions such as the 5th are 6th editions are ok to use).

The SRSU library has one copy of this textbook in the “Textbook Collection” section. Please ask the library front desk if you need help finding this textbook.

Calculator: A scientific calculator is required for this course.

Cell phones ARE NOT permitted for use in exams and should be turned off during class time.
The following chapters will be covered:

Chapter 1: Basic Concepts: Classification of Matter; Physical and Chemical Properties of Matter; Measurement; Handling Numbers; Dimensional Analysis in Solving Problems

Chapter 2: Atoms, Molecules, and Ions

Chapter 3: Stoichiometry

Chapter 4: Reactions in Aqueous Solutions

Chapter 5: The Ideal Gas Equation

Chapter 7: The Electronic Structure of Atoms

Chapter 8: The Periodic Table

Chapter 9 and 10: Chemical Bonding

Homework: There will be problems assigned for each chapter. **NO LATE HOMEWORK WILL BE ACCEPTED.**

Examinations: There will be **three midterm** examinations and a **final** examination. The final is mandatory and will be comprehensive. **NO MAKE-UP EXAMS WILL BE GIVEN.**

NOTE: Homeworks and Exams MUST be completed in pen!

ATTENDANCE PREREQUISITE: BEING ABSENT FROM MORE THAN 6 LECTURES WILL RESULT IN FAILING THE COURSE.

PERCENTAGE BREAKDOWN OF MARKS:

Homework: 25%
Each Midterm Exam (16.67%): 50%
Final Exam: 25%
Midterm Exam I: Thursday September 26th
Midterm Exam II: Tuesday October 22nd
Midterm Exam III: Tuesday November 19th
Final Exam: Monday December 9th 10:15 am -12:15 pm WSB 301

Course Calendar

Lecture 1 (August 27): Discussion on Syllabus, importance of chemistry, classifications of matter, overview of states and properties of matter, physical and chemical changes

Lecture 2 (August 29): Units of measurements (length, volume, density, temperature etc.) and scientific notation and significant figures

Lecture 3 (September 3): Precision and accuracy; discussion on selective questions and problems on chapter 1

Lecture 4 (September 5): Dalton’s atomic theory, discoveries of subatomic particles (electron, proton, and neutron), Rutherford’s atomic model, atomic number, mass number, and isotopes; Homework 1 due

Lecture 5 (September 10): Molecules, compounds, ions, molecular formula, empirical formula, chemical nomenclature, naming of compounds, acids, bases, oxides, and oxoacids

Lecture 6 (September 12): Discussion on selective questions and problems on chapter 2; Molecular mass, mole, molar mass, atomic mass, formula mass and their relations; Homework 2 due

Lecture 7 (September 17): Chemical equations and balancing chemical equations Calculations of product/reactant amounts using balanced chemical equations, limiting reagents, and percent yields

Lecture 8 (September 19): Discussion on selective questions and problems on chapter 3, Homework 3 due

Lecture 9 (September 24): Exam Revision, terminologies related to solutions, electrolytes, non-electrolytes, and precipitation reactions
Lecture 10 (September 26): Exam I, Chapters 1, 2 & 3

Lecture 11 (October 1): Writing balanced ionic equations, acid-base reactions; oxidation numbers; oxidation-reduction reactions with examples

Lecture 12 (October 3): Solution stoichiometry, concentration units, and gravimetric analysis; discussion on selective questions and problems on chapter 4, *Homework 4 due*

Lecture 13 (October 8): Physical properties of gases—relation between temperature, pressure, volume and amount of gases; Ideal gas law and its applications;

Lecture 14 (October 10): Gas stoichiometry—calculation of reactant/product amounts in gaseous reactions using ideal gas equation; Kinetic theory of ideal gases, deviation of deal gas properties, modification of ideal gas law for real gases;

Lecture 15 (October 15): Discussion on selective questions and problems on chapter 5; *Homework 5 due*

Lecture 16 (October 17): Properties of light, black-body radiation and photo-electric effect; atomic spectra and Bohr atomic theory; Exam Revision

Lecture 17 (October 22): Exam II – Chapters 4 & 5

Lecture 18 (October 24): De Broglie equation, dual nature of particles, Schrodinger wave equation and orbital concept, electronic configuration–Aufbau principle, Hund’s rule, paramagnetism

Lecture 19 (October 29): Discussion on selective questions and problems on chapter 7, introductory discussion on periodic table, classification of elements, and electronic configuration of ions, periodic variation of properties of elements *Homework 6 due*

Lecture 20 (October 31): Group properties of elements, discussion on selective questions and problems on chapter 8

Lecture 21 (November 5): Basic concepts of chemical bonding, ionic bonds, lattice energy, and calculation of lattice energy, *Homework 7 due*
Lecture 22 (November 7): Covalent bonds, polar covalent bonds and polarity, Lewis structures of molecules, formal charge calculations

Lecture 23 (November 12): Resonance structures and bond energy, discussion on selective questions and problems on chapter 9. Homework 8 due

Lecture 24 (November 14): Exam revision, molecular geometry-Valence shell electron repulsion theory

Lecture 25 (November 19): Exam III; Chapters 7-9

Lecture 26 (November 21): Prediction of molecular geometry and polarity, molecular geometry-valence bond orbital theory

Lecture 27 (November 26): Molecular orbital theories, discussion on selective questions and problems on chapter 10. Homework 9 due

November 27-29: NO CLASS: THANKSGIVING HOLIDAY

Lecture 2 (December 3): Review for Final Exam

Final Exam (Comprehensive) (Monday December 9th): 10:00am - 12:15 pm (WSB 301)

Students with Special Needs: Sul Ross State University is committed to equal access in compliance with the Americans With Disabilities Act of 1973. It is the student’s responsibility to initiate a request for accessibility services. Students seeking accessibility services must contact Mary Schwartze, M. Ed., L.P.C., in Counseling and Accessibility Services, Ferguson Hall, Room 112. The mailing address is P.O. Box C-122, Sul Ross State University, Alpine, Texas 79832. Telephone: 432-837-8203. E-mail: mschwartze@sulross.edu.

Scholastic Dishonesty: Students who violate the University rules on scholastic dishonesty are subject to penalties, including the possibility of an F in the course and/or dismissal from the University. All assignments (including homework) need to be individually completed and not copied from another student’s work. Electronic submission of homework is accepted after hours (not recommended), but must be hand written and scanned (either with a scanner or a smart phone) and emailed to Dr. Leaver at: david.leaver@sulross.edu. Homework electronically completed in Microsoft Word or other similar programs will NOT be accepted.