Differential Equations

Time: TR 11 – 12:15
Room: ACR 206

Instructor: Eric Funasaki
Office: ACR 109C
Phone: 432-837-8109
e-mail: eric.funasaki@sulross.edu

Office Hours:

Textbook:

Course Description:
First order differential equations, linear differential equations of higher order, power series solutions, systems of linear differential equations, and applications. Use of a programmable graphing calculator may be required. Students are also introduced to a symbolic algebra system running on a personal computer.

Prerequisite:
Math 2414 Calculus II

Mathematics Program Learning Objectives:
The student should be able to:
1. Apply knowledge of basic mathematics principles;
2. Identify and provide valid proofs or solutions for theorems or problems; and
3. Recognize and dispute invalid mathematical statements using counterexamples.

Course Objectives:
The student will be able to:
1. Solve first and second order linear differential equations quantitatively and qualitatively.
2. Solve systems of first order linear differential equations quantitatively and qualitatively.
EC-6 Core Teacher Competencies:

1. Competency 013 (Mathematics Instruction): The teacher understands how students learn mathematical skills and uses that knowledge to plan, organize, and implement instruction and assess learning.
2. Competency 014 (Number Concepts and Operation): The teacher understands concepts related to numbers, operations and algorithms, and the properties of numbers.
3. Competency 015 (Patterns and Algebra): The teacher understands concepts related to patterns, relations, functions, and algebraic reasoning.
4. Competency 016 (Geometry and Measurement): The teacher understands concepts related to principles of geometry and measurement.
5. Competency 017 (Probability and Statistics): The teacher understands concepts related to probability and statistics and their applications.
6. Competency 018 (Mathematical Processes): The teacher understands mathematical processes and knows how to reason mathematically, solve mathematical problems, and make mathematical connections within and outside of mathematics.

Course Assessment:

Your grade will be based on the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-class problems and participation</td>
<td>10%</td>
</tr>
<tr>
<td>Homework assignments and quizzes</td>
<td>20%</td>
</tr>
<tr>
<td>Exams</td>
<td>48%</td>
</tr>
<tr>
<td>Comprehensive Final Exam</td>
<td>22%</td>
</tr>
</tbody>
</table>

The grading scale will be:

90 – 100 A 80 – 89 B 70 – 79 C 60 – 69 D 0 – 59 F

Course Schedule (tentative):

Week 1
1/14 T 1.1 Some Basic Mathematical Models; Direction Fields
1.2 Solutions of Some Differential Equations
1.3 Classification of Differential Equations
1/16 R 2.1 Linear Equations; Method of Integrating Factors

Week 2
1/21 T 2.4 Differences Between Linear and Nonlinear Equations
1/23 R 2.5 Autonomous Equations and Population Dynamics

Week 3
1/28 T 3.1 Homogeneous Equations with Constant Coefficients
3.2 Fundamental Solutions of Linear Homogeneous Equations
3.3 Linear Independence and the Wronskian
1/30 R 3.4 Complex Roots of the Characteristic Equation, 3.5 Repeated Roots

Week 4
2/4 T 3.6 Nonhomogeneous Equations; Method of Undetermined Coefficients
2/6 R 3.6 Nonhomogeneous Equations; Method of Undetermined Coefficients
3.8 Mechanical and Electrical Vibrations
Week 5
2/11 T 3.8 Mechanical and Electrical Vibrations, 3.9 Forced Vibrations
2/13 R Review for Exam 1

Week 6
2/18 T Exam 1
2/20 R 6.1 Definition of the Laplace Transform

Week 7
2/25 T 6.2 Solution of Initial Value Problems
2/27 R 6.2 Solution of Initial Value Problems

Week 8
3/3 T 6.3 Step Functions
3/5 R 6.4 Differential Equations with Discontinuous Forcing Functions

Week 9
3/10 T Spring Break (no class)
3/12 R Spring Break (no class)

Week 10
3/17 T 6.5 Impulse Functions
3/19 R Review for Exam 2

Week 11
3/24 T Exam 2
3/26 R 7.1 Introduction (Systems of First Order Linear Equations)
7.2 Review of Matrices
7.3 Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors

Week 12
3/31 T 7.3 Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors
7.5 Homogeneous Linear Systems with Constant Coefficients
4/2 R 7.5 Homogeneous Linear Systems with Constant Coefficients

Week 13
4/7 T 7.6 Complex Eigenvalues
4/9 R 7.8 Repeated Eigenvalues

Week 14
4/14 T 9.3 Almost Linear Systems, 9.5 Predator-Prey Equations
4/16 R 9.5 Predator-Prey Equations, 9.4 Competing Species

Week 15
4/21 T Review for Exam 3
4/23 R Exam 3

Week 16
4/28 T Review for Final Exam
4/30 R Dead Day (no class)

Week 17
5/4 M Final Exam (10:15 am – 12:15 pm)
Attendance Policy:

Role will be taken. You are responsible for all material covered in class as well as any assignments and announcements that are made. If you miss an assignment, exam, or quiz you will receive a grade of zero unless the instructor has been notified in advance.

Sul Ross State University policy is to assign a grade of F when 9 hours of class are missed by a student. For this course that is when you miss 6 classes.

Cheating:

Cheating will not be tolerated. Anyone caught cheating will receive a grade of zero on that assignment, exam, or quiz.

Cell Phones and Other Electronic Devices:

Your cell phone must be off while you are in class. You may not read or send text messages while class is in session. If there is an unusual situation where you simply must be able to read and send a message without delay, place your phone in vibrate mode and leave the room before reading and responding. No other electronic devices may be used during class without the permission on the instructor.

ADA Statement:

Sul Ross State University (SRSU) is committed to equal access in compliance with the Americans with Disabilities Act of 1973. It is SRSU policy to provide reasonable accommodations to students with documented disabilities. It is the student’s responsibility to initiate a request. Please contact Ms. Rebecca Greathouse Wren, M.Ed., LPC-S, Director/Counselor, Accessibility Services Coordinator, Ferguson Hall (Suite 112) at 432-837-8203; mailing address is P.O. Box C-122, Sul Ross State University, Alpine, Texas 79832. Students should then contact the instructor as soon as possible to initiate the recommended accommodations.