Back

 

MATH 1314

MATH 1314 (MATH 1314) College Algebra (3-0). In-depth study and applications of polynomial rational radical exponential and logarithmic functions and systems of equations using matrices. Additional topics such as sequences series probability and conics may be included.


Summer 2024


College Algebra   Section 1W1   Angela Brown, Ph.D.
|
 | Student Evaluation
College Algebra   Section 2C1   Marina Kimball
|
 | Student Evaluation


Spring 2024


College Algebra   Section 001   Kristofer Jorgenson
|
 | Student Evaluation
College Algebra   Section 002   Kristofer Jorgenson
|
 | Student Evaluation
College Algebra   Section C01   Marina Kimball
|
 | Student Evaluation
College Algebra   Section EP3   Marites Romero
|
 | Student Evaluation
College Algebra   Section EP4   Jose Munoz
Syllabus
|
Curriculum Vitæ
 | Student Evaluation


Fall 2023


College Algebra   Section 002   Eric T. Funasaki, Ph.D.
College Algebra   Section C01   Marina Kimball
College Algebra   Section W01   Angela Brown, Ph.D.


Summer 2023


College Algebra   Section 201   Kristofer Jorgenson


Spring 2023


College Algebra   Section 001   Kristofer Jorgenson
College Algebra   Section 002   Kristofer Jorgenson
|
 | Student Evaluation
College Algebra   Section C01   Richard Mrozinski


Fall 2022


College Algebra   Section 001   Eric T. Funasaki, Ph.D.
College Algebra   Section 002   Kristofer Jorgenson
College Algebra   Section 003   Kristofer Jorgenson
|
 | Student Evaluation
College Algebra   Section 004   Richard Mrozinski
College Algebra   Section ALP   Eric T. Funasaki, Ph.D.
College Algebra   Section C01   Richard Mrozinski


Summer 2022


College Algebra   Section 201   Angela Brown, Ph.D.
College Algebra   Section 2C1   Angela Brown, Ph.D.


Spring 2022


College Algebra   Section 001   Kristofer Jorgenson
|
 | Student Evaluation
College Algebra   Section 002   Kristofer Jorgenson
College Algebra   Section 003   Richard Mrozinski
|
 | Student Evaluation
College Algebra   Section ALP   Kristofer Jorgenson
|
 | Student Evaluation
College Algebra   Section C01   Richard Mrozinski